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ABSTRACT

Sampling techniques have been used previously to evaluate Jacobian

determinants that occur in classical mechanical descriptions of molecular

scattering. These determinants also occur in the quasiclassical approxima

tion. A new technique is described which can be used to evaluate Jacobian

determinants which occur in either description. This method is expected to

be valuable in the study of reactive scattering using the quasiclassical

approximation.
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INTRODUCTION

The essence of molecular scattering is the transformation of an initial

distribution of states into a final distribution of states, by means of a

scattering process. The formal description of the scattering in either of

the classical or the quasiclassical frameworks frequently invokes Jacobian

determinants of the transformations. These determinants are difficult to

evaluate in systems with several degrees of freedom, since they involve many

partial derivatives. It will be shown below how these transformations may

be carried out by sampling methods, and how the related Jacobiaps may be

obtained from the sample distributions.
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The quantity c\:t'( I et~X defined by (3) is mu~h more amenable

to computation than J defined by (4), since the latter quantity involves

N2 partial derivatives. The method usually followed in classical mechanical

studies (see, e.g., [1]) is to find f Y CY) directly from (1).

Suppose r X}~, is a set of uniformly distributed

* Vrandom vectors X . For small fixed

*To avoid confusion with the k-th component of the vector )(

index k is written as a left superscript.

, the set
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found from (5). Equation (8) is seen to be essentially a finite difference

approximation to the measure derivative

In the case of molecular scattering, is a vector of initial

conditions, and

EXAMPLE

y is a vector of final conditions.

An example of the use of (7) and (8) which isolates their difference

might be the approximation of the differential scattering cross section

for the case of scattering by a spherically symmetric

potential:

,
l.

where the sum is over regions of the impact parameter

(9)

which con-

tribute to the differential cross section at the angle of deflection )G

(1. e. usually over one or three "branches" of the deflection function

%(k) ). Suppose a set of M . values of are chosen equally

spaced, and for Applying (7),
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I

M 6't

k such that

(10)

Note that the Jacobian d~/cJ.)r

occurs implicitly by affecting the number of values of

x:. - l:JX/z. L ~k .c. ~ + LJ ~/2..

applying (8),

k for which

On the other hand,
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(11)

***is a constant, proportional to 11M.

where andfor6 :0R ~R - X,k-I
6)r fl-k - )rk~land

***Note for the case of one dimension. (3) and (4) are identical.

QUASICLASSICAL APPROXIMATION

The technique of sampling distributions of initial conditions. computing

the classical trajectories which link them to the final states. and constructing

the final state distributions (by (7) above), has been used extensively in

the past in classical calculations (see, e.g., [1]). The suggestion is now

made that this technique can be applied to the quasiclassica1 formalism for

molecular scattering. which is emerging through the work of Miller [2-6].

Marcus [7-9]. Levine [10-11]. and coworkers.

Briefly. the quasiclassical approximation is obtained as follows: let

(12)

where ~E
for energy ~

ate vector. and

"is solution to the time-dependent Schrodinger equation

3- -::::. ('1\) 'iL } I " ) :L N) is the generalized coordin-

A and cP are real-valued. Substitution of

"(12) into the time-dependent Schrodinger equation yields [12]
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(13a)

o (13b)

where V (1.) is the interaction potential, and vY\ is the mass

appropriate to each coordinate.
t

The quasiclassical approximation

t
For example, in cartesian coor~inat[eS'd~ 1. (ra¢)'2. 19 cP )2J
LIm (y~)'L = L 2mi. (d X ) + d~i + dC,

where the sum is over particles.

results when the right-hand side of (l3a) is neglected. Equations (13) may

then be written

+ I
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Equation (14a) is recognized as the Hamilton-Jacobi equation with solution

-tlITd-1:/ - E-t:
o

+ (15)

where T is the kinetic energy E - V Equation (14b) is the

equation of continuity of the trajectory determined by , with
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where 0_° ~ Q (0) ..L.
I J- is the coordinate vector of the system at ~~ 0

which is assumed to correspond to a time for which V ( i) ~ 0

The boundary conditions of (14a) are that 'V 1> c~ )0) =- pO::: P(O) ,

where is the initial momentum vector.

Thus in the quasiclassical approximation, the same Jacobian determinants

that occur in classical mechanics occur to the one-half power via A(i)

It is suggested that these Jacobians may be evaluated by the procedure

illustrated by equation (8).tt

ttThe difficulty with the use of (7) is that the square-root present in the

quasiclassical approximation means that the sum over "branches" and the sum

over trajectories corresponding to these branches no longer commute. That

is, the Jacobian occurs implicitly in (7), but its square-root is needed

to obtain

To consider an example, W. H. Miller [3, eq. (29)] gives the following

expression for the s matrix element for the transition from

to for the collinear collision of an atom with

a diatomic oscillator:

(17)
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initial and final states. To evaluate

is a phase similar to

phase of vibration, and

equation (8)

is a reduced

correspond to the

~

and-J--iL- - I

1\

c\:>where

may be used, giving

(18)

where the sum is over the results of

conditions chosen uniformly in a.-L,

for k>\ and

M

, and

trajectories with initial

Li - \' Q - 9 \
2 l:\ - _1.2. R.. - 2. k- \ }

ttt J ) )

tttNote that the integration over and the estimation of

are performed simultaneously.

CONCLUSION

It has been shown how sampling techniques may be used to evaluate

Jacobian determinants and to transform distributions, with particular appli-

cation to the classical and quasiclassical descriptions of molecular scattering,

A method of obtaining the Jacobian of the scattering transformation directly

by sampling was described, which allows application of the quasic1assical

approximation to the sampled classical results in a natural way. It should

be noted that with the use of the method illustrated by equation (8), all

that is required to extend the classical results to quasiclassical is the

additional information of the phase associated with each
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trajectory. This method should be valuable in the case of reactive scat

tering, where (thus far) analytical techniques have failed (see [6]).
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